Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
BMC Infect Dis ; 24(1): 434, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654148

RESUMO

BACKGROUND: The problem of resistance to beta-lactam antibiotics, which is caused by ESBL and AmpC ß-lactamases, is getting worse globally. Infections caused by bacterial isolates harboring these enzymes are difficult to treat with carbapenems being the sole effective treatment option for such infections. The objective of this study was to determine the frequency of ESBLs and AmpC-producing Gram-negative bacilli isolated from clinical specimens and to evaluate the sensitivity of cefepime-tazobactam combination against them. METHODS: This is an observational cross-sectional study carried out on 100 Gram-negative bacilli at Theodor Bilharz Research Institute Hospital during the period from February 2015 to January 2016. ESBL production was screened by using the disc diffusion test followed by confirmation by the combined disc confirmatory test, the screening for AmpC production was conducted using the cefoxitin disc test, which was subsequently confirmed by the AmpC disc test. Isolates confirmed positive for ESBL and/ or AmpC production were investigated for their susceptibility to antibiotics. RESULTS: Among 100 Gram-negative bacilli, 44 isolates were confirmed as ESBL producers by the combined disc confirmatory test out of 56 isolates that tested positive for ESBL production through the disc diffusion test. The presence of AmpC production was assessed using the cefoxitin disc test, 32 isolates were screened to be AmpC producers, and the AmpC disc test confirmed AmpC production in 9 isolates of them. Using the Mast® D68C set, 32 isolates were ESBL producers, 3 were AmpC producers, and 4 isolates were ESBL/AmpC co-producers. The highest sensitivity was to cefepime-tazobactam (91.48%) followed by the carbapenems. CONCLUSION: Cefepime-tazobactam showed remarkable activity against ESBL and/or AmpC-producing Gram-negative bacilli and may be considered as a therapeutic alternative to carbapenems.


Assuntos
Antibacterianos , Proteínas de Bactérias , Cefepima , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Tazobactam , beta-Lactamases , beta-Lactamases/metabolismo , Cefepima/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/isolamento & purificação , Humanos , Estudos Transversais , Antibacterianos/farmacologia , Tazobactam/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Cefalosporinas/farmacologia , Masculino , Feminino , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/farmacologia
2.
Antimicrob Agents Chemother ; 68(4): e0154823, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38415988

RESUMO

The impact of penicillin-binding protein 3 (PBP3) modifications that may be identified in Escherichia coli was evaluated with respect to susceptibility to ß-lactam/ß-lactamase inhibitor combinations including ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, aztreonam-avibactam, cefepime-taniborbactam, and to cefiderocol. A large series of E. coli recombinant strains producing broad-spectrum ß-lactamases was evaluated. While imipenem-relebactam showed a similar activity regardless of the PBP3 background, susceptibility to other molecules tested was affected at various levels. This was particularly the case for ceftazidime-avibactam, aztreonam-avibactam, and cefepime-taniborbactam.


Assuntos
Aztreonam , Ácidos Borínicos , Ácidos Borônicos , Ácidos Carboxílicos , 60607 , Ceftazidima , Aztreonam/farmacologia , Meropeném/farmacologia , Cefepima/farmacologia , Proteínas de Ligação às Penicilinas , Escherichia coli , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/química , Combinação de Medicamentos , Imipenem/farmacologia , Imipenem/química , Testes de Sensibilidade Microbiana
3.
Eur J Clin Microbiol Infect Dis ; 43(2): 279-296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041722

RESUMO

PURPOSE: To characterize the resistance mechanisms affecting the cefepime-taniborbactam combination in a collection of carbapenemase-producing Enterobacterales (CPE) and carbapenem-resistant Pseudomonas spp. (predominantly P. aeruginosa; CRPA) clinical isolates. METHODS: CPE (n = 247) and CRPA (n = 170) isolates were prospectively collected from patients admitted to 8 Spanish hospitals. Susceptibility to cefepime-taniborbactam and comparators was determined by broth microdilution. Cefepime-taniborbactam was the most active agent, inhibiting 97.6% of CPE and 67.1% of CRPA (MICs ≤ 8/4 mg/L). All isolates with cefepime-taniborbactam MIC > 8/4 mg/L (5 CPE and 52 CRPA) and a subset with MIC ≤ 8/4 mg/L (23 CPE and 24 CRPA) were characterized by whole genome sequencing. RESULTS: A reduced cefepime-taniborbactam activity was found in two KPC-ST307-Klebsiella pneumoniae isolates with altered porins [KPC-62-K. pneumoniae (OmpA, OmpR/EnvZ), KPC-150-K. pneumoniae (OmpK35, OmpK36)] and one each ST133-VIM-1-Enterobacter hormaechei with altered OmpD, OmpR, and OmpC; IMP-8-ST24-Enterobacter asburiae; and NDM-5-Escherichia coli with an YRIN-inserted PBP3 and a mutated PBP2. Among the P. aeruginosa (68/76), elevated cefepime-taniborbactam MICs were mostly associated with GES-5-ST235, OXA-2+VIM-2-ST235, and OXA-2+VIM-20-ST175 isolates also carrying mutations in PBP3, efflux pump (mexR, mexZ) and AmpC (mpl) regulators, and non-carbapenemase-ST175 isolates with AmpD-T139M and PBP3-R504C mutations. Overall, accumulation of these mutations was frequently detected among non-carbapenemase producers. CONCLUSIONS: The reduced cefepime-taniborbactam activity among the minority of isolates with elevated cefepime-taniborbactam MICs is not only due to IMP carbapenemases but also to the accumulation of multiple resistance mechanisms, including PBP and porin mutations in CPE and chromosomal mutations leading to efflux pumps up-regulation, AmpC overexpression, and PBP modifications in P. aeruginosa.


Assuntos
Antibacterianos , Proteínas de Bactérias , Ácidos Borínicos , Carbapenêmicos , Ácidos Carboxílicos , Humanos , Cefepima/farmacologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Pseudomonas/genética , Espanha/epidemiologia , beta-Lactamases/genética , Pseudomonas aeruginosa/genética , Testes de Sensibilidade Microbiana
4.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930836

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a significant clinical pathogen that poses a substantial threat due to its extensive drug resistance. The rapid and precise identification of this resistance is crucial for effective clinical treatment. Although matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for antibiotic susceptibility differentiation of some bacteria in recent years, the genetic diversity of P. aeruginosa complicates population analysis. Rapid identification of antimicrobial resistance (AMR) in P. aeruginosa based on a large amount of MALDI-TOF-MS data has not yet been reported. In this study, we employed publicly available datasets for P. aeruginosa, which contain data on bacterial resistance and MALDI-TOF-MS spectra. We introduced a deep neural network model, synergized with a strategic sampling approach (SMOTEENN) to construct a predictive framework for AMR of three widely used antibiotics. RESULTS: The framework achieved area under the curve values of 90%, 85%, and 77% for Tobramycin, Cefepime, and Meropenem, respectively, surpassing conventional classifiers. Notably, random forest algorithm was used to assess the significance of features and post-hoc analysis was conducted on the top 10 features using Cohen's d. This analysis revealed moderate effect sizes (d = 0.5-0.8) in Tobramycin and Cefepime models. Finally, putative AMR biomarkers were identified in this study. CONCLUSIONS: This work presented an AMR prediction tool specifically designed for P. aeruginosa, which offers a hopeful pathway for clinical decision-making.


Assuntos
Pseudomonas aeruginosa , Tobramicina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Pseudomonas aeruginosa/genética , Cefepima/farmacologia , Fatores de Tempo , Tobramicina/farmacologia
5.
Pharm Res ; 40(10): 2423-2431, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783926

RESUMO

PURPOSE: Nacubactam (NAC) is a novel diazabicyclooctane ß-lactamase inhibitor used in combination with cefepime (CFPM). In this study, we aimed to determine the target pharmacokinetics (PK) and pharmacodynamics (PD) values of CFPM/NAC in mice infected with ß-lactamase-producing Enterobacterales, such as the carbapenemase-producing Enterobacterales. METHODS: Three strains of ß-lactamase-producing Enterobacterales, Klebsiella pneumoniae MSC 21444, Escherichia coli MSC 20662, and K. pneumoniae ATCC BAA-1898, were used for checkerboard assays and fractionation studies and dose-range studies. A PK study was performed in neutropenic mice. Additionally, PK/PD analysis was performed based on the instantaneous minimum inhibitory concentration (MICi) concept. RESULTS: Checkerboard measurements revealed that higher NAC concentrations decreased the CFPM MIC in a concentration-dependent manner. In all tested strains, fT > MICi calculated from the PK experiments showed a high correlation with the mean change in the bacterial count of thigh-infected mice in the in vivo PD study, suggesting that fT > MICi is an optimal PK/PD parameter for monitoring the CFPM/NAC combination. The target fT > MICi values for CFPM/NAC to achieve a bacteriostatic effect, 1-log10-kill, and 2-log10-kill values were 30, 49, and 94%, respectively. CONCLUSIONS: Our results indicate that fT > MICi is a PK/PD parameter is suitable for monitoring the CFPM/NAC combination. The minimum target value for achieving a static effect against ß-lactamase-producing Enterobacterales is 30%.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Animais , Camundongos , Cefepima/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/farmacocinética , beta-Lactamases , Escherichia coli , Testes de Sensibilidade Microbiana
6.
Curr Opin Infect Dis ; 36(6): 615-622, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846592

RESUMO

PURPOSE OF REVIEW: Serious infections caused by nonfermenting Gram-negative bacteria (NF-GNB) pose a significant challenge for clinicians due to the limited treatment options available, which are frequently associated with issues of toxicity and unfavourable pharmacokinetic profiles. The aim of this review is to provide a brief overview of the existing data concerning the ongoing development of antiinfective agents targeting NF-GNB. RECENT FINDINGS: Several agents exhibiting efficacy against NF-GNB are under clinical investigation. Durlobactam-sulbactam and cefepime-taniborbactam emerge as promising therapeutic avenues against carbapenem-resistant Acinetobacter baumanii . Cefepime-zidebactam may serve as a suitable treatment option for urinary tract infections caused by a wide range of NF-GNB. Cefepime-enmetazobactam demonstrates potent in vitro activity against various NF-GNB strains; however, its role as an anti- Pseudomonal agent is inadequately substantiated by available data. Xeruborbactam is a wide ß-lactamase inhibitor that can be associated with a range of agents, enhancing in-vitro activity of these against many NF-GNB, including those resistant to newer, broader spectrum options. Lastly, murepavadin appears to be a potential pathogen-specific solution for severe Pseudomonas infections; however, additional investigation is necessary to establish the safety profile of this compound. SUMMARY: Each of the novel molecules reviewed possesses an interesting range of in-vitro activity against NF-GNB. In addition, some of them have already been proved effective in vivo, underscoring their potential as future treatment options.


Assuntos
Infecções por Bactérias Gram-Negativas , Humanos , Cefepima/farmacologia , Cefepima/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Cefalosporinas/uso terapêutico , Testes de Sensibilidade Microbiana
7.
J Antimicrob Chemother ; 78(12): 2801-2809, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839896

RESUMO

BACKGROUND: Sulbactam-durlobactam is a potent combination active against Acinetobacter baumannii; however, it lacks activity against other nosocomial pathogens. Cefepime is a common first-line therapy for hospital/ventilator-associated pneumonia caused by Gram-negative pathogens including Pseudomonas aeruginosa and Enterobacterales. With increasing resistance to cefepime, and the significant proportion of polymicrobial nosocomial infections, effective therapy for infections caused by Acinetobacter baumannii, P. aeruginosa and Enterobacterales is needed. This study investigated the in vitro synergy of sulbactam-durlobactam plus cefepime against relevant pathogens. METHODS: Static time-kills assays were performed in duplicate against 14 cefepime-resistant isolates (A. baumannii, n = 4; P. aeruginosa, n = 4; Escherichia coli, n = 3; Klebsiella pneumoniae, n = 3). One WT K. pneumoniae isolate was included. Antibiotic concentrations simulated the free-steady state average concentration of clinically administered doses in patients. RESULTS: Sulbactam-durlobactam alone showed significant activity against A. baumannii consistent with the MIC values. Sulbactam-durlobactam plus cefepime showed synergy against one A. baumannii isolate with an elevated MIC to sulbactam-durlobactam (32 mg/L). Against all P. aeruginosa isolates, synergy was observed with sulbactam-durlobactam plus cefepime. For the Enterobacterales, one E. coli isolate demonstrated synergy while the others were indifferent due to significant kill from sulbactam-durlobactam alone. The combination of sulbactam-durlobactam plus cefepime showed synergy against one of the K. pneumoniae and additive effects against the other two K. pneumoniae tested. No antagonism was observed in any isolates including the WT strain. CONCLUSIONS: Synergy and no antagonism was observed with a combination of sulbactam-durlobactam and cefepime; further in vivo pharmacokinetic/pharmacodynamics data and clinical correlation are necessary to support our findings.


Assuntos
Acinetobacter baumannii , Pseudomonas aeruginosa , Humanos , Cefepima/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Sulbactam/farmacologia , Testes de Sensibilidade Microbiana
8.
Antimicrob Agents Chemother ; 67(11): e0049823, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37768313

RESUMO

The novel clinical-stage ß-lactam-ß-lactamase inhibitor combination, cefepime-taniborbactam, demonstrates promising activity toward many Gram-negative bacteria producing class A, B, C, and/or D ß-lactamases. We tested this combination against a panel of 150 Burkholderia cepacia complex (Bcc) and Burkholderia gladioli strains. The addition of taniborbactam to cefepime shifted cefepime minimum inhibitory concentrations toward the provisionally susceptible range in 59% of the isolates tested. Therefore, cefepime-taniborbactam possessed similar activity as first-line agents, ceftazidime and trimethoprim-sulfamethoxazole, supporting further development.


Assuntos
Complexo Burkholderia cepacia , Burkholderia gladioli , Fibrose Cística , Humanos , Estados Unidos , Cefepima/farmacologia , Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases , Testes de Sensibilidade Microbiana
9.
Transpl Infect Dis ; 25(6): e14115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577960

RESUMO

BACKGROUND: Antimicrobial-resistant Gram-negative bacilli (ARGNB) bloodstream infection (BSI) has been associated with prior antibiotic exposure among hematologic malignancy patients. The relationships between days of therapy (DOT), antimicrobial class, and ARGNB BSI risk are poorly understood. METHODS: This is a single-center, case-control study of acute myeloid leukemia (AML) patients including 115 cases with ARGNB BSI and 230 matched controls with non-ARGNB BSI between January 1, 2007 and December 31, 2018. Fixed- and mixed-effects logistic regression was used to examine relationships between antibiotic DOT and risk of ARGNB BSI. Admission to an intensive care unit (ICU) within 7 days, 30-day mortality, and Pitt Bacteremia Score (PBS) were secondary outcomes. RESULTS: Prior isolation of a antimicrobial-resistant organism (ARO) (OR 4.45 95% CI 1.46, 13.54), surgery within 90 days (OR 3.71, 95% CI 1.57, 8.73), aminoglycoside DOT (OR 1.14, 95% CI 1.05, 1.23), cefepime DOT (OR 1.09, 95% CI 1.05, 1.13), and carbapenem DOT (OR 1.10, 95% CI 1.05, 1.16) were associated with increased odds of ARGNB BSI. Days since last antibiotic administration (OR 0.98, 95% CI 0.97, 0.99) and inpatient days within 90 days (OR 0.95, 95% CI 0.93, 0.98) showed reduced odds of ARGNB BSI. Total antimicrobial DOT regardless of class was not associated with ARGNB BSI. ARGNB BSI was associated with increased 30-day mortality (OR 2.86, 95% CI 1.57, 5.22) CONCLUSIONS: Among AML patients with GNB BSI, greater DOT of aminoglycosides, cefepime, and carbapenems in the 90 days prior to BSI were associated with increased odds of ARGNB BSI.


Assuntos
Bacillus , Bacteriemia , Humanos , Cefepima/farmacologia , Estudos de Casos e Controles , Duração da Terapia , Antibacterianos/efeitos adversos , Bactérias Gram-Negativas , Carbapenêmicos/farmacologia , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Estudos Retrospectivos , Fatores de Risco
10.
Ann Clin Microbiol Antimicrob ; 22(1): 55, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408075

RESUMO

Infections in critically-ill patients caused by extensively-drug-resistant (XDR)-Pseudomonas aeruginosa are challenging to manage due to paucity of effective treatment options. Cefepime/zidebactam, which is currently in global Phase 3 clinical development (Clinical Trials Identifier: NCT04979806, registered on July 28, 2021) is a novel mechanism of action based ß-lactam/ ß-lactam-enhancer combination with a promising activity against a broad-range of Gram-negative pathogens including XDR P. aeruginosa. We present a case report of an intra-abdominal infection-induced sepsis patient infected with XDR P. aeruginosa and successfully treated with cefepime/zidebactam under compassionate use. The 50 year old female patient with past-history of bariatric surgery and recent elective abdominoplasty and liposuction developed secondary pneumonia and failed a prolonged course of polymyxins. The organism repeatedly isolated from the patient was a New-Delhi metallo ß-lactamase-producing XDR P. aeruginosa resistant to ceftazidime/avibactam, imipenem/relebactam and ceftolozane/tazobactam, susceptible only to cefepime/zidebactam. As polymyxins failed to rescue the patient, cefepime/zidebactam was administered under compassionate grounds leading to discharge of patient in stable condition. The present case highlights the prevailing precarious scenario of antimicrobial resistance and the need for novel antibiotics to tackle infections caused by XDR phenotype pathogens.


Assuntos
Infecções Intra-Abdominais , Infecções por Pseudomonas , Sepse , Humanos , Cefepima/uso terapêutico , Cefepima/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Ensaios de Uso Compassivo , Cefalosporinas/uso terapêutico , Cefalosporinas/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Monobactamas/farmacologia , Pseudomonas aeruginosa , beta-Lactamases/genética , Sepse/tratamento farmacológico , Infecções Intra-Abdominais/tratamento farmacológico , Polimixinas , Testes de Sensibilidade Microbiana
12.
J Glob Antimicrob Resist ; 34: 179-185, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473915

RESUMO

OBJECTIVES: Although generic medicinal products are required to have the same qualitative and quantitative composition of the active substance as their reference originator product, patients and health care professionals express concerns about their interchangeability and safety. Therefore, the present study investigated the antimicrobial activity and pathogen mutation prevention of original and generic cefepime, linezolid and piperacillin/tazobactam against Staphylococcus aureus. METHODS: Two generic formulations of cefepime, linezolid and piperacillin/tazobactam were tested against their respective originator products. Susceptibility testing was performed with twenty-one clinical isolates of S. aureus and ATCC-29213 using broth microdilution. Time kill curves (TKC) were performed with ATCC-29213 at drug concentrations above and below the respective minimum inhibitory concentrations (MIC). Mutation prevention concentration was determined for each drug formulation against ATCC-29213. All experiments were performed in triplicate. Mutant colonies from mutation prevention concentration (MPC) experiments were genotypically tested by sequence analysis. RESULTS: MIC ratios between contiguous originator and generic drugs were similar for each isolate. No visual differences were observed in TKCs between originator and generic substances. The MPC did not differ between different formulations of the same substance. Although sequence analysis of mutant colonies revealed genomic differences compared with the original ATCC-29213, no differences in mutation frequencies were observed between clinical isolates and ATCC-29213 treated with originator or generic substances. CONCLUSIONS: Similar antimicrobial activity and pathogen mutation prevention was observed between contiguous substances. These results support the interchangeability of generic and originator drug formulations with the same active ingredient.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Linezolida/farmacologia , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefepima/farmacologia , Medicamentos Genéricos/farmacologia , Combinação Piperacilina e Tazobactam , Infecções Estafilocócicas/tratamento farmacológico , Mutação
13.
J Cell Biochem ; 124(7): 974-988, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37282600

RESUMO

Carbapenem-resistant Acinetobacter baumannii, a predominant nosocomial pathogen in hospitals of intensive care units, is associated with bacteremia and ventilator-associated pneumonia with a high-risk mortality rate. To increase the effectiveness of the ß-lactam (BL) antibiotics, the use of ß-lactamase inhibitors (BLI) acts as a booster when given in combination with BL antibiotics. To this aspect, we selected BL antibiotics of cefiderocol, cefepime, non-BL antibiotic eravacycline, BLI of durlobactam, avibactam, and a ß-lactam enhancer (BLE) of zidebactam. To prove our hypothesis, we determined the minimum inhibitory concentration (MIC) of various BL or non-BL/BLI or BLE combinations using broth microdilution method followed by in silico analysis of molecular docking, molecular dynamics (MD) simulation, and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) identifies the potential combination. In MIC testing, eravacycline, cefepime/zidebactam, cefiderocol/zidebactam, and eravacycline in combination with zidebactam or durlobactam were found to be effective against oxacillinases (OXAs) (OXA-23/24/58 like) expressing A. baumannii isolates. The docking results of the selected ligands toward OXA-23, OXA-24, and OXA-58 had an excellent binding score ranging from -5.8 to -9.3 kcal/mol. Further, the docked complexes were subjected and evaluated using gromacs for molecular dynamics simulation of 50 ns toward selected class D OXAs. The binding energies obtained from MM-PBSA shed light on the binding efficiencies of each non-BL, BL, and BLI/BLE, thereby helping us to propose the drug combinations. Based on the MD trajectories scoring acquired, we propose using eravacycline, cefepime/zidebactam, cefiderocol/zidebactam, and eravacycline in combination with durlobactam or zidebactam would be promising for treating OXA-23, OXA-24, and OXA-58 like expressing A. baumannii infections.


Assuntos
Acinetobacter baumannii , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia , Antibacterianos/farmacologia , Cefepima/farmacologia , Simulação de Acoplamento Molecular , Lactamas/farmacologia , beta-Lactamases
14.
Antimicrob Agents Chemother ; 67(7): e0033923, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255469

RESUMO

The impact of broad-spectrum ß-lactamases on the susceptibility to novel ß-lactamase/ß-lactamase inhibitor combinations was evaluated both in Pseudomonas aeruginosa and Escherichia coli using isogenic backgrounds. Cefepime-zidebactam displayed low MICs, mainly due to the significant intrinsic antibacterial activity of zidebactam. Cefepime-taniborbactam showed excellent activity against recombinant E. coli strains, including metallo-ß-lactamase producers, whereas aztreonam-avibactam remained the best therapeutic option against class B ß-lactamase-producing P. aeruginosa.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamas , Cefepima/farmacologia , Inibidores de beta-Lactamases/farmacologia , Meropeném/farmacologia , beta-Lactamas/farmacologia , Aztreonam/farmacologia , Imipenem , Pseudomonas aeruginosa/genética , Escherichia coli/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Testes de Sensibilidade Microbiana
15.
J Antimicrob Chemother ; 78(7): 1622-1631, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37210083

RESUMO

BACKGROUND: Cefepime and aztreonam are highly efficacious against H. influenzae, and resistant strains are rare. In this study, we isolated cefepime- and aztreonam-nonsusceptible H. influenzae strains and addressed the molecular basis of their resistance to cefepime and aztreonam. METHODS: Two hundred and 28 specimens containing H. influenzae were screened, of which 32 isolates were enrolled and applied to antimicrobial susceptibility testing and whole-genome sequencing. Genetic variations that were detected in all nonsusceptible isolates with statistical significance by Fisher's exact tests were identified as cefepime or aztreonam nonsusceptibility related. Functional complementation assays were conducted to assess the in vitro effects of proteins with sequence substitutions on drug susceptibility. RESULTS: Three H. influenzae isolates were nonsusceptible to cefepime, one of which was also nonsusceptible to aztreonam. Genes encoding TEM, SHV and CTX-M extended-spectrum ß-lactamases were not detected in the cefepime- and aztreonam-nonsusceptible isolates. Five genetic variations in four genes and 10 genetic variations in five genes were associated with cefepime and aztreonam nonsusceptibility, respectively. Phylogenetic analyses revealed that changes in FtsI were correlated strongly with the MIC of cefepime and moderately with aztreonam. FtsI Thr532Ser-Tyr557His cosubstitution linked to cefepime nonsusceptibility and Asn305Lys-Ser385Asn-Glu416Asp cosubstitution to aztreonam nonsusceptibility. Functional complementation assays revealed that these cosubstitutions increased MICs of cefepime and aztreonam in susceptible H. influenzae isolates, respectively. CONCLUSIONS: Genetic variations relevant to resistant phenotypes of cefepime and aztreonam nonsusceptibility in H. influenzae were identified. Moreover, the effects of FtsI cosubstitutions on increasing MICs of cefepime and aztreonam in H. influenzae were demonstrated.


Assuntos
Aztreonam , Haemophilus influenzae , Cefepima/farmacologia , Aztreonam/farmacologia , Filogenia , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
16.
J Antimicrob Chemother ; 78(5): 1191-1194, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36921067

RESUMO

BACKGROUND: Aztreonam/avibactam is one of the last therapeutic options for treating infections caused by NDM-like-producing Enterobacterales. However, PBP3-modified and NDM-producing Escherichia coli strains that co-produce CMY-42 have been shown to be resistant to this drug combination. The aim of our study was to assess the in vitro activity of cefepime/taniborbactam and cefepime/zidebactam against such aztreonam/avibactam-resistant E. coli strains. METHODS: MIC values of aztreonam, aztreonam/avibactam, cefepime, cefepime/taniborbactam, cefepime/zidebactam and zidebactam alone were determined for 28 clinical aztreonam/avibactam-resistant E. coli isolates. Those isolates produced either NDM-5 (n = 24), NDM-4 (n = 2) or NDM-1 (n = 2), and they all co-produced CMY-42 (n = 28). They all harboured a four amino acid insertion in PBP-3 (Tyr-Arg-Ile-Asn or Tyr-Arg-Ile-Lys). RESULTS: All strains were resistant to aztreonam/avibactam and cefepime, as expected. The resistance rate to cefepime/taniborbactam was 100%, with MIC50 and MIC90 being at 16 mg/L and 64 mg/L, respectively. Conversely, all strains were susceptible to cefepime/zidebactam, with both MIC50 and MIC90 at 0.25 mg/L. Notably, all strains showed low MICs for zidebactam alone, with MIC50 and MIC90 at 0.5 mg/L and 1 mg/L. CONCLUSIONS: Our data highlighted the excellent in vitro performance of the newly developed ß-lactam/ß-lactamase inhibitor combination cefepime/zidebactam against aztreonam/avibactam-resistant E. coli strains, suggesting that this combination could be considered as an efficient therapeutic option in this context. Our study also highlights the cross-resistance between acquired resistance to aztreonam/avibactam and the cefepime/taniborbactam combination.


Assuntos
Aztreonam , Escherichia coli , Aztreonam/farmacologia , Cefepima/farmacologia , Antibacterianos/farmacologia , beta-Lactamases/metabolismo , Cefalosporinas/farmacologia , Compostos Azabicíclicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Testes de Sensibilidade Microbiana
17.
An Acad Bras Cienc ; 95(2): e20210141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36921147

RESUMO

Klebsiella pneumoniae is a species of Gram-negative bacteria related to a wide range of infections and high rates of drug resistance. The combined use of antibacterial agents is one of the strategies that has been analyzed in recent years as part of the alternatives in the treatment of drug-resistant infections. Recently, the antibacterial activity of of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide has been demonstrated against K. pneumoniae, also indicating that this acetamide did not show significant cytotoxic potential in preliminary tests. Thus, it becomes an interesting substance for future studies that explore its antimicrobial capacity, including investigating its association with antibacterial drugs. Based on this, this research aimed to analyze the effects of the association of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide (CFA) with ciprofloxacin, cefepime, ceftazidime, meropenem and imipenem against K. pneumoniae strains. The results showed additivity when the substance was combined with ciprofloxacin and cefepime, indifference when associated with ceftazidime and synergistic effect when combined with meropenem and imipenem. Thus, the acetamide was able to optimize the effects of antibacterial drugs, reducing the concentrations necessary to cause bacterial death. These data indicate a potential future clinical use of these combinations, and further studies are needed to analyze this viability.


Assuntos
Anti-Infecciosos , Ceftazidima , Meropeném/farmacologia , Ceftazidima/farmacologia , Klebsiella pneumoniae , Cefepima/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , Anti-Infecciosos/farmacologia , Ciprofloxacina/farmacologia , Acetamidas/farmacologia , Testes de Sensibilidade Microbiana
19.
J Clin Microbiol ; 61(3): e0143122, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36840604

RESUMO

The declining cost of performing bacterial whole-genome sequencing (WGS) coupled with the availability of large libraries of sequence data for well-characterized isolates have enabled the application of machine-learning (ML) methods to the development of nonlinear sequence-based predictive models. We tested the ML-based model developed by Next Gen Diagnostics for prediction of cefepime phenotypic susceptibility results in Escherichia coli. A cohort of 100 isolates of E. coli recovered from urine (n = 77) and blood (n = 23) cultures were used. The cefepime MIC was determined in triplicate by reference broth microdilution and classified as susceptible (MIC of ≤2 µg/mL) or not susceptible (MIC of ≥4 µg/mL) using the 2022 Clinical and Laboratory Standards Institute breakpoints. Five isolates generated both susceptible and not susceptible MIC results, yielding categorical agreement of 95% for the reference method to itself. Categorical agreement of ML to MIC interpretations was 97%, with 2 very major (false, susceptible) and 1 major (false, not susceptible) errors. One very major error occurred for an isolate with blaCTX-M-27 (MIC mode, ≥32 µg/mL) and one for an isolate with blaTEM-34 for which the MIC cefepime mode was 4 µg/mL. One major error was for an isolate with blaCTX-M-27 but with a MIC mode of 2 µg/mL. These preliminary data demonstrated performance of ML for a clinically important antimicrobial-species pair at a caliber similar to phenotypic methods, encouraging wider development of sequence-based susceptibility prediction and its validation and use in clinical practice.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Cefepima/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , Cefalosporinas/farmacologia , Testes de Sensibilidade Microbiana
20.
J Antibiot (Tokyo) ; 76(3): 183-189, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690707

RESUMO

Surfactants might impact treatment of lower respiratory tract infections. Moreover, other body fluids, such as urine or serum, could impact antibacterial activity as well. Therefore, the impact of surfactants, urine, and serum on the antibacterial activity of the novel ß-lactam/ß-lactamase inhibitor combination of cefepime-enmetazobactam (FPE) was determined. Ten clinical isolates of Klebsiella pneumoniae, and the quality control strains K. pneumoniae ATCC 700603 and Escherichia coli NCTC 13353, were tested. Minimal Inhibitory Concentration (MIC) determinations (all strains) and Time Kill Curves (TKC) (one clinical isolate) were determined for FPE and piperacillin-tazobactam (TZP) with and without surfactant formulations Survanta® (SUR; 1%v/v) and Curosurf® (CUR; 1 mg ml-1). Determination of daptomycin MIC against Staphylococcus aureus ATCC 29213 in the presence and absence of surfactants was used as a positive control. Additionally, the impact of growth media supplemented with pooled human urine or serum were also evaluated by MIC testing. Expectedly, media supplemented with SUR increased the daptomycin MIC against S. aureus ATCC 29213. In contrast, the surfactants had no impact on the antibacterial activity of FPE against the tested Enterobacterales isolates. TKC experiments also revealed no impact of CUR on the antibacterial activity of FPE. These results demonstrate that the antibacterial activity of FPE is unaffected in the presence of lung surfactant. Moreover, FPE was not impacted by media supplemented with urine or serum.


Assuntos
Líquidos Corporais , Daptomicina , Humanos , Cefepima/farmacologia , Inibidores de beta-Lactamases , Klebsiella pneumoniae , Cefalosporinas/farmacologia , Tensoativos , Staphylococcus aureus , Antibacterianos/farmacologia , Monobactamas , Escherichia coli , Testes de Sensibilidade Microbiana , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...